362

the whole set of 00/ reflexions and can be ruled out.
I and IV give alternating signs for consecutive re-
flexions in the set and were considered unlikely; more-
over, IV corresponds to the trivial solution. Only V
and VIII of the four combinations left gave models
with a satisfactory distribution of peak heights in the
E maps and no ghost peaks. The model from VIII
proved to be correct.

Table 4. Signs of some 00! reflexions for various sign
combinations in starting set A
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Conclusions

Intersymbolic relations are of no significance in
selecting the correct sign combination in a chosen
starting set in P1.

When incorrect signs have been included in the data,
they may cause a very rapid propagation of more errors
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during the symbolic-addition procedure. It may
therefore prove advantageous to break off the 3,
process at an early stage and calculate £ maps with a
small number of terms. For three cases examined, E
maps were calculated with the 50 structure factors
signed in the first stages by >,. They were found to
contain as much or even significantly more correct
information than maps based on all E’s above some
arbitrary limit, e.g. 1-2. It is implied that if incorrect
signs enter into the data at a very early stage, even
reduced £ maps may contain too many erroneous
features.

Discrimination between probable and less probable
sign models may be aided by the use of structural in-
formation. A rather crude application of structural
knowledge is shown as an example from the work on a
chain structure. More refined methods based on these
principles could certainly be of great value, in part-
icular with structures giving heavy overlap in Patterson
space.
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A Complete Catalogue of Polyhedra with Eight or Fewer Vertices

By DoyLE BriTTON* AND J. D. DUNITZ
Laboratory for Organic Chemistry, Federal Institute of Technology, 8006 Zurich, Switzerland
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All non-isomorphic convex polyhedra with 4, 5, 6, 7 and 8 vertices are listed. The relationships within

each class are described.

In the course of an attempt to describe in a systematic
way the coordination of eight ligand atoms around a
central atom with no symmetry restrictions, we en-
countered the problem of enumerating all possible
non-isomorphic convex polyhedra with eight vertices.
According to Alexandrow (1958) the number N(#) of

* Permanent address: Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

polyhedra with n vertices is: N(4)=1, N(5)=2, N(6)=
7, N(7)=34, N(8)=257, but we were unable to find
any publication in which these polyhedra are described.
Grace (1965) has determined by computer search all
polyhedra with up to eleven faces with the restriction
that only three edges meet at each vertex. The duals of
these polyhedra are the polyhedra with up to eleven
vertices with the restriction that all faces are tri-
angular; these, however, are only a small fraction of the
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total. Since we could not find the complete list, we
decided to make it. We report the results here and shall
discuss some of the possible applications elsewhere.
The preparation of the list was briefly as follows:
beginning with the tetrahedron, the only polyhedron
of order 4, all completely triangulated convex poly-
hedra (i.e. only triangular faces permitted) of order
n+1 were generated by adding an extra vertex in all
possible ways and completing the extra triangles. Our

Fig. 1. The tetrahedron - the only polyhedron with four
vertices.

Dan Cav
Fig. 2. The two polyhedra with five vertices.

(5) (4) ©
RO REs
© (3) (3 (3) @ (3)

@Fc,, 3rce, ©

!
©
O, ©
O (3
(3) D,

Fig. 3. The seven polyhedra with six vertices: these are shown
in the left and centre columns. The right-hand column shows
alternative representations for some of the polyhedra in the
centre column. The arrows indicate relationship by the
removal or addition of an edge.
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results agreed with Grace’s list. The list for order n was
then expanded by removing one edge at a time to
produce first quadrilateral faces, then pentagonal
faces or pairs of quadrilateral faces, ezc. This expan-
sion process was continued until further removal of
edges would necessarily lead to vertices associated with
less than three edges or to non-convex polyhedra with
two faces sharing non-adjacent vertices. After elimina-
tion of the extensive replications this process finally led
to the complete list for order n.

The tetrahedron is the only polyhedron with four
vertices. We represent it as in Fig. 1. The circles corre-
spond to vertices, the numbers in the circles give the
number of edges that terminate at that vertex, and the
lines represent edges, dotted lines corresponding to
edges that would be hidden if the faces were opaque.
The numbers are redundant but they make the more
complicated figures easier to follow and also guard
against drawing and copying errors. Although all
tetrahedra are equivalent in a topological sense, and
no symmetry is required, the maximum possible
symmetry of the polyhedron is also given.

We shall represent all of the polyhedra in the same
way. That is, we shall show all the vertices on the
perimeter of a polygon of order n, with the appropriate
diagonals. This corresponds to tracing a Hamilton
circuit (a closed path that visits each vertex once and
only once) for each polyhedron. In general there is
more than one such circuit possible so that our rep-
resentation is not unique. There are many other ways
of drawing such polyhedra, and indeed, for any given
polyhedron some other way is likely to be preferred.

Table 1. The relationships among the polyhedra
with seven vertices

The polyhedra listed by number (see Fig. 4) in the first column
can be generated by removing the appropriate edge from the
immediately following polyhedra or by adding a diagonal
across the appropriate quadrilateral, pentagonal, or hexagonal
faces of the polyhedra in the second list.

REMOVE EDGE FROM ADD EDGE TO

. . . . . . . . . . 6 9

I
1 [} .
2 o . . . . . . . . . 6 7 11
3 o . . . . . . . . . 7 e 10 12
a o . . . . . . . . 9 $2 13
5 o . . . . 11 12
6 1 2 . . . . e 14 17 22
7 2 3 . . e 14 16 17 18 19
8 3 . . « 15 18 20
9 1 4 - . . « 17 21 22
- . 14 20
*? g 5 . . . . . . . . e« 19 22
12 3 4 . . « 15 17 19 20 20 24
13 4 L] . e 1S 19 21 22 23 24
14 6 7 10 . . . . . 25 26
15 8 1z 13 . . . « 26 27
16 7 . . . « 25 28
17 6 7 9 12 . 26 28 30
18 T 8 . . . . . . . . . e« 26 31
19 T 11 12 13 . . . . . e 26 28 30
20 8 to 12 12 . . . . . s 26 27 31 22
21 ° 13 . . . . . e 28 29 230
22 6 9 11 13 - . e 26 230
23 13 . . « 27 29 30
24 12 13 . e« 27 30 3
28 14 16 . . . . . . . . . L]
26 14 1S 17 18 19 20 22 . . . . e 23
27 15 20 23 24 . . . . ¢ 33
28 16 17 19 21 . . . . s 34
29 21 23 . . . . . . o 24
30 17 19 21 22 23 24 . . e« 33 34
31 18 19 20 2a . . . e 33
32 20 . . . . « 33
a3 26 27 30 31 32 . . . . o
34 28 29 30 . . ©
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Our representation has the advantage, however, that
it provides an easier visualization of the relationships
between different polyhedra. Note that every convex
volyhedron can be represented by a planar graph of
connectivity at least three. Such a graph is obtained
from our representation if the dotted edges are re-
placed by connexions drawn outside the basic polygon
of order n, in such a way that they do not intersect.
The completely triangulated polyhedra correspond to
maximal planar graphs, i.e. they contain the max-
imum number of edges compatible with the non-
intersection criterion,

There are two polyhedra of order five (Fig. 2). As
described above, the second can be generated from the
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first by the removal of an edge (or vice-versa); the
arrow indicates this relationship.

There are seven polyhedra with six vertices, related
as shown in Fig. 3; if the O, octahedron were drawn
in the more conventional form indicated as an alter-
native, then successive removal of inner edges to pro-
duce finally the trigonal prism (D) is only possible if
the order of vertices in the basic polygon is rearranged.
Indeed, exhaustive removal of edges to leave the basic
polygon without rearrangement of vertices is only
possible for the polyhedra of order five and six; it is
not possible for higher polyhedra in general.

The polyhedra with seven vertices are shown in
Fig. 4. They are arranged first by the number of edges,

Of

2v

Fig. 4. The 34 polyhedra with seven vertices. The interrelationships ate given in Table 1.

A C29A -4+
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orientation of the octagon (¢f. No. 256 and No. 257).

Fig. 5. The 257 polyhedra with eight vertices. The polyhedra related to the cube (No. 257) are distinguished by the different
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Fig. 5 (cont.)
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Fig. 5 (cont.)
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Fig. 5 (cont.)
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Fig. 5 (cont.)
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Fig. 5 (cont.)

then by the distribution of types of faces, then by the
distribution of types of vertices, but this does not
completely order the list, so they are also numbered
arbitrarily from 1-34, Note, for example, that 17 and
18 are isomers in the sense that both have a face dis-
tribution 3¢4,5,6, and vertex distribution 3,4,5,6, (in
both codes the subscript indicates the number of faces
or vertices with a given order). For polyhedra with
seven vertices the inter-relationships are so compli-
cated that a drawing (as provided in Fig. 3 for poly-
hedra with six vertices) would be more confusing than
useful. These inter-relationships are described in
Table 1.

The polyhedra with eight vertices are shown in
Fig. 5. The 37 polyhedra that can be generated from
the cube (No. 257) are shown with the basic octagon
rotated by 7/8 from the orientation used for the remain-

ing figures. The two other common coordination poly-
hedra with eight vertices, the Archimedean antiprism
(No. 128), and the dodecahedraon (No. 16), are also
members of the family derived from the cube. The
inter-relationships are given in Table 2.

This work was supported by the Swiss National
Fund for the Advancement of Scientific Research. We
thank Mrs L. aMarca and Miss H. Géchter for their
help in drawing the figures.
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